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I. P h F  Condens. Maua 5 (1993) 371-378. Printed in the L K  

Field theoretic treatment of the strong-coupling attractive 
Hubbard model with diagonal disorder 

Jiirgen Stem 
Physikalischer Imtitut der Univaxit%t Wiirzburg, Am Hubland, W81W Wiirzburg. 
Federal Republic of Gmany 

k i v e d  13 July 19% in final fm 16 November 1992 

Abstract We present a field theoretic formulation of the strbngngcoupling atMctive 
Hubbard model with Gaussian distributed random onsite energies. Selfconsistency 
equations for the ordcr parameten of superconductivity and charge ordaing are derived 
at lowest loop order and solved for the limiting cases of weak and smug disorder. 
W also study dynamical pmpenia and cakulate the influence of dmrdcr on the 
Bogoliubov-Anderson mode m the supmnducting phase. 

1. Introduction 

The problem of electronic systems with attractive local interaction has attracted 
considerable interest in recent years [l]. In these systems strong-coupling leads to the 
formation of electron pairs which may undergo a Bose-condensation-%e transition 
to a superconducting phase. Strong-couphg Hubbard models with attractive on-site 
interaction and delta-correlated disorder have been devised as the natural candidates 
for superconducting glasses [2]. 

In the present paper we study the large-negative4 (w) Hubbard model with 
random on-site energies obeying a Gaussian dismiution. This disordered model is 
equivalent to an anisotropic pseudospin quantum Heisenberg model in a random 
external field and has been the subject of some discussion [2,3] where mean-field- 
l i e  operator decouplig schemes and more simple probability distributions were used. 
The random field problem, as such, has been approached for classical spin systems 
by various authors [GI, while a field theoretic treatment of this problem appeared 
to be hampered by the lack of a simple representation of spin operators allowing for 
full control of quantum fluctuations. This goal can be facilitated by a Grassmannian 
representation of the pseudospin operators based on the diagram technique proposed 
by Popov and Fedotov [7] which leads to a semionic theory of the LNU Hubbard model 
[SI. This technique utilizes the observation that the constraint imposed on the Hilbert 
space of a fermionic representation of spin-+ operators can be modelled correctly by a 
modified Matsubara frequency spectrum with values interpolating between the bosonic 
and fermionic case. The Hilbert space constraint showing up in the strong-coupling limit 
of the attractive Hubbard model is then correctly reproduced by a modification of the 
original formulation resulting in spin-dependent semionic Matsubara frequencies [SI. 

We find that the results obtained by Micnas et a1 [3] applying a mean-field 
approximation for the square and twodelta distribution are formally equivalent to the 
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312 J Stein 

saddle-point solution of our field theoretic approach and can be naturally extended to 
Gaussian disorder. 

An explicit solution of the self-consistency equations is given for the cases of weak 
and strong disorder. We report results for the Critical temperatures, thesuperconducting 
order parameter and the density of states. Moreover, the effect of disorder on 
dynamical properties is investigated by calculating the Bogoliubov-Anderson mode in 
the superconducting phase. 

2. Field theoretic derivation of self-consistency equations 

We consider the Hubbard Hamiltonian with hopping amplitude t between 
neighbouring sites and attractive on-site interaction U > 0. Diagonal disorder is 
introduced by random on-site energies e;. 

In the w e  of strong-coupling U > t a well known mapping of the attractive Hubbard 
Hamiltonian leads to an effective model equivalent to a pseudospin anisotropic 
quantum Heisenberg Hamiltonian with attractive interaction in the XY-sector and 
repulsion in the Ising sector 

' H = J z ( - A T d j  + N j N j ) - x ( p + e ; ) N ;  (22 )  
( i i )  

where J = 2tZ/U and pair operators Ai = ailail .  and A t  = a$.$ have been 
introduced. We further apply the identification Ni = At  A, = i (n iT  + ni l )  which 
is valid in the restricted Hilbert space of the strong-coupling limit where only doubly 
occupied or empty sites exist. The random on-site energies E ;  are assumed to be only 
locally correlated (site-diagonal) and to obey a Gaussian distribution with zero mean 

The quenched average of the partition function may then be written as a functional 
integral over replicated Grassmann fields 

with replica index o = 1,. . . , NR and the action 
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The Gaussian distribution of the random energies can be integrated out and yields 
the effective action in Matsubara frequency space 

(2.6) 
I a n ,  =,,,-On2 + E ( P W ) 2  +au +io +id +!?. 

iuu'mOntnt 

The (semionic) Matsubara frequency spectrum znu = ( ~ / P h ) ( 2 n  + 1 + 0/2) has 
spindependent modified values as a consequence of the proper treatment of the 
Hilbert space constraint. This is achieved by introducing a special valued imaginary 
magnetic field which preserves time-reversal invariance and projects out contributions 
from unphysical states in the partition function and those observables or correlation 
functions which presem the global SU(2) pseudospin symmetry of Hamiltonian (2.2) 
(see [SI for further detaails). 

These modilied frequencies are related to a global U(1) gauge transformation 
of the original Grassmann fields which acquire an additional phase factor 
exp((irru/ZPti)r) resulting in unusual periodicity conditions GU(ph) = imJU(O) 
of the anticommuting fields. 

In order to extract physically relevant properties from this form of the action we 
have to decouple the products of four Grassmann fields by introducing 2NR + 1 local 
HubbardStratonovich fields a:, xy , yi which correspond to the superconducting 
order parameter, the pair occupation number or (pseudo)magnetization, and a Bose 
field which will sewe as an integration variable reflecting the Gaussian probability 
distribution, respectively. 

The action then takes the form 

S ( ~ ~ , $ ~ ~ )  = - i z y f + P  ( J - ' ) i j  ( - Z ~ ' " Z ~ - ~  + , w a y )  

i ( i j )uw 

+ x: ((iPtCz,, + Pp/Z -t fPwvi)6,0 + P Z Y - ~ )  $cu u n t w  
imunw 

imnw 

If we adopt the two-component spinor notation of Popov [lo] 

action (2.7) may be written in a compact form bilinear in the fermion fields 
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with the matrix A given by 

(A?=)= ( iPtizeT + P P / Z  + pzf + $WY; Pa? 
-K -Vhz,,+ Pp/2 + P.? + $WY; 

(2.10) 
Here the static approximation CY?"' = a?&, and I?" = +?Suo has been applied, 
which neglects the coupling between different energies of the fermionic fields and 
allows identfication of the saddle-point solution with the usual mean-field operator 
decoupling schemes. 

The remaining conventional integration over the spinor Grassmann fields can now 
be carried out. As a result one ends up with the (divergent) fermion determinant 

(2.11) 

which can be regularized without changing the physical results by A -+ A' = A;' A 
with A, = A(p  = a = x = w = 0). One then has 

We have made the usual assumption that a: and I? are independent of the 
replica index We have also set ai = a and I; = (-1)'x corresponding to the 
homogeneous singlet superconducting order (sc) and charge ordering (CDW) on two 
interpenetrating sublattices, respectively. This choice also ensures convergence of the 
Gaussian integrals over the decoupling fields. Performing the replica limit NR -+ 0 
and taking W = zJ ,  f, the free energy per site is readily derived 

-4kT hcoshP&lZ+ (p/2+;wy+c1) (2.13) 
e = i l  

The saddle-point solutions for a and I are then obtained by the conditions 

af/az = o = afpx (214) 

which finally lead to the self-comktency equations for the order parameters of 
superconductivity 

and charge ordering 

(2.16) 
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Similar equations for a square and a twodelta distribution were derived by Micnas 
et a2 [3] applying a mean-field-like decouphg of operators. Note that (215) is valid 
only for non-vanishing superconducting order parameter, while it implies vanishing 5' 

for finite w and half band filling. Therefore, the saddle-point solution in the presence 
of disorder does not allow for coexistence of a superconducting and a charge ordered 
phase at half fillmg in agreement with the conclusions reached in [3]. 

Our field theoretic approach also permits calculation of the fermionic oneparticle 
propagators at the saddle point, which are given by 

Gi(zmo) = QGi(Zno)) )  

where the Gaussian averages are performed over the zero-loop propagators Gi( zno) 
and Fi(zn,) of the clean LNU Hubbard model [SI with the chemical potential being 
modified by the local charge and on-site energy. The propagators are totally local as 
a consequence of the local U(l) invariance of the action (25) under 
with (Diu = 

+ eiV- *;e 

From (2.17) a further equation determining the chemical potential can be obtained 

In particular one has p = 0 at half filling (v = 4) for arbitrary temperature and 
strength of disorder. 

3. Discussion of mean-field results 

From equations (2.1.5) and (2.16) conditions for the critical temperatures of a 
transition to a superconducting or charge-ordered pure phase can be derived For 
general band filling one has 

and 

for CDW. (3.2) 
2 Jz;; -w cosh2 f@b t WY) 

One easily recognizes that the inequality Tf" 2 T,""" holds, becoming an equality 
for half filling in the clean limit w = 0 where the XY-sector and king sector of 

1 = 5 -  @ Jm dye-fYz 1 
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the pseudospin model (2.2) become equivalent due to a dual symmetty (or partial 
particlehole transformation). This symmetry maps the attractive Hubbard model 
onto the repulsive one which is equivalent to an isotropic Heisenberg model in the 
strong-coupling limit. Note that in this case (2.15) and (216) coincide, resulting in a 
single equation for the modulus of the total (pseudo)magnetization with its orientation 
being undetermined as a consequence of O(3) symmetry. 

The pure superconducting phase is always favoured in the presence of even 
arbitrarily weak disorder. One can further show that the pure superconducting state 
does not exhibit an instability towards formation of charge ordering. Coexistence of 
superconductivity and charge ordering is thus only possible for half filling and in the 
clean limit, while in all other cases a transition to a pure superconducting phase occurs. 

For general filling, but vanishing disorder, the well known results for the clean 
LNU Hubbard model [2,8,9] are retrieved. 

At half-band filling and for small disorder parameter 6 = w / W  < 1 the self- 
consistency equations can be explicitly evaluated and neglecting terms of order 
or higher one has the results for the critical temperatures 

kTcK = (W/Z)( 1 - $5’) 
kTc*w = (W/2)(1- 6’) (3.4) 

IQ1 = ( w/z)( I - $6*) for T -+ 0. (3.5) 

- 6e-&J;7I (3.6) 

(3.3) 

and the low-temperature value of the SC order parameter 

In the case of large disorder parameter 6 > 1 in this temperature regime one obtains 

indicating a strong suppression of superconducting order in the dirty limit. However, 
in the saddle-point solution superconductivity persists up to arbitrarily strong disorder. 

The critical behaviour of the order parameter near the transition point is given 
by the usual mean-field exponent 

The numerical prefactor may be determined for half fillig and near the clean limit 

Using the conventional relation 
= i(Tc - T) /T , ( l  - 46’). (3.8) 

(3.9) P ( E )  = r ( l /~ )  l i  ImE(e * iq) 
?-0 

and the result (217) for the normal propagator the density of states is then easily 
determined 

-sgnE sinh ( S l r G ) )  . (3.10) 
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For half filling this result reduces to a characteristic square-root singularity behaviour 
at flal with an additional Gaussian damping factor due to disorder. This is compared 
to the expression for the clean case 

P ( E )  = ; (1 - P / k )  (6 ( E  - J1-) + 6 (€ + J;.12../zr;>> 
(3.11) 

which is equivalent to the usual BCS result Ill] for electrons with infinite mass, 
reflecting the locality of the propagators. 

4. Bogoliubov-Anderson made 

In order to calculate the excitation spectra in the pure superconducting phase, the 
full time dependence in action (25) has to be retained and the fluctuations around 
the saddle-point value of the superconducting order parameter oo are separated by 

4 7 )  = Qu + 4(7). (4.1) 

The part of the action describing the fluctuations is then given by 

S, = t 4 d7 (-L ( W ( 7 )  + ao7((.) + ~ ( T ) + ( T ) )  + lndet (1 +A;' U+)) 
6 h  

WP 

(4-2) 

where A, is the saddle-point value of matrix (2.10) and 

For simplicity of notation replica indices have been suppressed. 
Expanding (4.2) up to second order in 4,5 and restricting ourselves to infinitesimal 

phase fluctuations of a(.) = aueiv(') one has +(T) = iaUq(7)  and the fluctuation 
part of the action in frequency space is readiIy derived 

where, = (vu, qw ) and the kernel of the bilinear form in (4.4) is given by the inverse 
two-particle propagator matrix 

The matrix elements are 
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which still depend on the integration variable y since averaging has not been performed 
yet. In the replica limit NR + 0 the inverseof the two-particle propagator reads 

(4.8) 

(4.9) 

The excitation spectrum is now derived from the condition that the bilinear form of the 
fluctuation fields becomes singular, i.e. det II( q,  w )  = 0 and 

The different signs correspond to the two excitation branches related to longitudinal 
and transversal fluctuations of the order parameter around the saddle-point value. The 
vanishing mass term of this equation reproduces the self-consistencycondition (215) for 
the superconducting order parameter as a consequence of the soft-mode behaviour of 
the Bogoliubov-Anderson mode. We recover the lmear dispersion relation 

W q )  = 4 " a  (4.10) 
for the sound-like compressional mode of superfluid pairs with the velocity' v given by 

I1 - (Wq/W((%~(m)))l = *tl(Wq/W((n~~(w)))l. 

(4.11) 
.. .. 

where we have introduced the abbreviations 
WtanhpR, 

By = $(@ + wy) R y = d G  x y 2  =- R , .  (4.12) 

In the clean limit X ,  1, and the result v = IQI with the value of the emct order 
parameter as suggested in [SI is retrieved. It is apparent from (4.11) that disorder leads 
to a damping of the mode in addition to the effect caused by the decrease of the order 
parameter. For low temperatures and weak disorder we find at half filling 

v = (W/2)(1- $6') (4.13) 
where the saddle-point value (3.5) has been used and the disorder-induced slowing down 
of the collective motion of Bose-condensed pairs is explicit 
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